Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nucleotide degradation and ribose salvage in yeast.

Identifieur interne : 001009 ( Main/Exploration ); précédent : 001008; suivant : 001010

Nucleotide degradation and ribose salvage in yeast.

Auteurs : Yi-Fan Xu [États-Unis] ; Fabien Létisse ; Farnaz Absalan ; Wenyun Lu ; Ekaterina Kuznetsova ; Greg Brown ; Amy A. Caudy ; Alexander F. Yakunin ; James R. Broach ; Joshua D. Rabinowitz

Source :

RBID : pubmed:23670538

Descripteurs français

English descriptors

Abstract

Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose-derived carbon accumulates as sedoheptulose-7-phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde-3-phosphate. Oxidative stress increases glyceraldehyde-3-phosphate, resulting in rapid consumption of sedoheptulose-7-phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress.

DOI: 10.1038/msb.2013.21
PubMed: 23670538
PubMed Central: PMC4039369


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nucleotide degradation and ribose salvage in yeast.</title>
<author>
<name sortKey="Xu, Yi Fan" sort="Xu, Yi Fan" uniqKey="Xu Y" first="Yi-Fan" last="Xu">Yi-Fan Xu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Letisse, Fabien" sort="Letisse, Fabien" uniqKey="Letisse F" first="Fabien" last="Létisse">Fabien Létisse</name>
</author>
<author>
<name sortKey="Absalan, Farnaz" sort="Absalan, Farnaz" uniqKey="Absalan F" first="Farnaz" last="Absalan">Farnaz Absalan</name>
</author>
<author>
<name sortKey="Lu, Wenyun" sort="Lu, Wenyun" uniqKey="Lu W" first="Wenyun" last="Lu">Wenyun Lu</name>
</author>
<author>
<name sortKey="Kuznetsova, Ekaterina" sort="Kuznetsova, Ekaterina" uniqKey="Kuznetsova E" first="Ekaterina" last="Kuznetsova">Ekaterina Kuznetsova</name>
</author>
<author>
<name sortKey="Brown, Greg" sort="Brown, Greg" uniqKey="Brown G" first="Greg" last="Brown">Greg Brown</name>
</author>
<author>
<name sortKey="Caudy, Amy A" sort="Caudy, Amy A" uniqKey="Caudy A" first="Amy A" last="Caudy">Amy A. Caudy</name>
</author>
<author>
<name sortKey="Yakunin, Alexander F" sort="Yakunin, Alexander F" uniqKey="Yakunin A" first="Alexander F" last="Yakunin">Alexander F. Yakunin</name>
</author>
<author>
<name sortKey="Broach, James R" sort="Broach, James R" uniqKey="Broach J" first="James R" last="Broach">James R. Broach</name>
</author>
<author>
<name sortKey="Rabinowitz, Joshua D" sort="Rabinowitz, Joshua D" uniqKey="Rabinowitz J" first="Joshua D" last="Rabinowitz">Joshua D. Rabinowitz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23670538</idno>
<idno type="pmid">23670538</idno>
<idno type="doi">10.1038/msb.2013.21</idno>
<idno type="pmc">PMC4039369</idno>
<idno type="wicri:Area/Main/Corpus">001030</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001030</idno>
<idno type="wicri:Area/Main/Curation">001030</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001030</idno>
<idno type="wicri:Area/Main/Exploration">001030</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nucleotide degradation and ribose salvage in yeast.</title>
<author>
<name sortKey="Xu, Yi Fan" sort="Xu, Yi Fan" uniqKey="Xu Y" first="Yi-Fan" last="Xu">Yi-Fan Xu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Letisse, Fabien" sort="Letisse, Fabien" uniqKey="Letisse F" first="Fabien" last="Létisse">Fabien Létisse</name>
</author>
<author>
<name sortKey="Absalan, Farnaz" sort="Absalan, Farnaz" uniqKey="Absalan F" first="Farnaz" last="Absalan">Farnaz Absalan</name>
</author>
<author>
<name sortKey="Lu, Wenyun" sort="Lu, Wenyun" uniqKey="Lu W" first="Wenyun" last="Lu">Wenyun Lu</name>
</author>
<author>
<name sortKey="Kuznetsova, Ekaterina" sort="Kuznetsova, Ekaterina" uniqKey="Kuznetsova E" first="Ekaterina" last="Kuznetsova">Ekaterina Kuznetsova</name>
</author>
<author>
<name sortKey="Brown, Greg" sort="Brown, Greg" uniqKey="Brown G" first="Greg" last="Brown">Greg Brown</name>
</author>
<author>
<name sortKey="Caudy, Amy A" sort="Caudy, Amy A" uniqKey="Caudy A" first="Amy A" last="Caudy">Amy A. Caudy</name>
</author>
<author>
<name sortKey="Yakunin, Alexander F" sort="Yakunin, Alexander F" uniqKey="Yakunin A" first="Alexander F" last="Yakunin">Alexander F. Yakunin</name>
</author>
<author>
<name sortKey="Broach, James R" sort="Broach, James R" uniqKey="Broach J" first="James R" last="Broach">James R. Broach</name>
</author>
<author>
<name sortKey="Rabinowitz, Joshua D" sort="Rabinowitz, Joshua D" uniqKey="Rabinowitz J" first="Joshua D" last="Rabinowitz">Joshua D. Rabinowitz</name>
</author>
</analytic>
<series>
<title level="j">Molecular systems biology</title>
<idno type="eISSN">1744-4292</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>AMP-Activated Protein Kinases (genetics)</term>
<term>AMP-Activated Protein Kinases (metabolism)</term>
<term>Cyclic AMP-Dependent Protein Kinases (genetics)</term>
<term>Cyclic AMP-Dependent Protein Kinases (metabolism)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Glyceraldehyde 3-Phosphate (metabolism)</term>
<term>N-Glycosyl Hydrolases (deficiency)</term>
<term>N-Glycosyl Hydrolases (genetics)</term>
<term>NADP (metabolism)</term>
<term>Nucleotides (metabolism)</term>
<term>Pentose Phosphate Pathway (genetics)</term>
<term>Protein-Serine-Threonine Kinases (genetics)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Purine-Nucleoside Phosphorylase (deficiency)</term>
<term>Purine-Nucleoside Phosphorylase (genetics)</term>
<term>Ribose (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Stress, Physiological (genetics)</term>
<term>Sugar Phosphates (MeSH)</term>
<term>Transaldolase (genetics)</term>
<term>Transaldolase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>AMP-Activated Protein Kinases (génétique)</term>
<term>AMP-Activated Protein Kinases (métabolisme)</term>
<term>Cyclic AMP-Dependent Protein Kinases (génétique)</term>
<term>Cyclic AMP-Dependent Protein Kinases (métabolisme)</term>
<term>Glycéraldéhyde 3-phosphate (métabolisme)</term>
<term>N-Glycosyl hydrolases (déficit)</term>
<term>N-Glycosyl hydrolases (génétique)</term>
<term>NADP (métabolisme)</term>
<term>Nucléotides (métabolisme)</term>
<term>Oses phosphates (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (génétique)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Purine nucleoside phosphorylase (déficit)</term>
<term>Purine nucleoside phosphorylase (génétique)</term>
<term>Ribose (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Stress physiologique (génétique)</term>
<term>Transaldolase (génétique)</term>
<term>Transaldolase (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
<term>Voie des pentoses phosphates (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>N-Glycosyl Hydrolases</term>
<term>Purine-Nucleoside Phosphorylase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>AMP-Activated Protein Kinases</term>
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>N-Glycosyl Hydrolases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Purine-Nucleoside Phosphorylase</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transaldolase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>AMP-Activated Protein Kinases</term>
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Glyceraldehyde 3-Phosphate</term>
<term>NADP</term>
<term>Nucleotides</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Ribose</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transaldolase</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>N-Glycosyl hydrolases</term>
<term>Purine nucleoside phosphorylase</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Pentose Phosphate Pathway</term>
<term>Saccharomyces cerevisiae</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>AMP-Activated Protein Kinases</term>
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>N-Glycosyl hydrolases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Purine nucleoside phosphorylase</term>
<term>Saccharomyces cerevisiae</term>
<term>Stress physiologique</term>
<term>Transaldolase</term>
<term>Voie des pentoses phosphates</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>AMP-Activated Protein Kinases</term>
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Glycéraldéhyde 3-phosphate</term>
<term>NADP</term>
<term>Nucléotides</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Ribose</term>
<term>Saccharomyces cerevisiae</term>
<term>Transaldolase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Signal Transduction</term>
<term>Sugar Phosphates</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Oses phosphates</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose-derived carbon accumulates as sedoheptulose-7-phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde-3-phosphate. Oxidative stress increases glyceraldehyde-3-phosphate, resulting in rapid consumption of sedoheptulose-7-phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23670538</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>09</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1744-4292</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<PubDate>
<Year>2013</Year>
<Month>May</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>Molecular systems biology</Title>
<ISOAbbreviation>Mol Syst Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Nucleotide degradation and ribose salvage in yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>665</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/msb.2013.21</ELocationID>
<Abstract>
<AbstractText>Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose-derived carbon accumulates as sedoheptulose-7-phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde-3-phosphate. Oxidative stress increases glyceraldehyde-3-phosphate, resulting in rapid consumption of sedoheptulose-7-phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Yi-Fan</ForeName>
<Initials>YF</Initials>
<AffiliationInfo>
<Affiliation>Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Létisse</LastName>
<ForeName>Fabien</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Absalan</LastName>
<ForeName>Farnaz</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Wenyun</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kuznetsova</LastName>
<ForeName>Ekaterina</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brown</LastName>
<ForeName>Greg</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Caudy</LastName>
<ForeName>Amy A</ForeName>
<Initials>AA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yakunin</LastName>
<ForeName>Alexander F</ForeName>
<Initials>AF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Broach</LastName>
<ForeName>James R</ForeName>
<Initials>JR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rabinowitz</LastName>
<ForeName>Joshua D</ForeName>
<Initials>JD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P50 GM071508</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA163591</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM076562</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA163591</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Syst Biol</MedlineTA>
<NlmUniqueID>101235389</NlmUniqueID>
<ISSNLinking>1744-4292</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009711">Nucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013403">Sugar Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142-10-9</RegistryNumber>
<NameOfSubstance UI="D005986">Glyceraldehyde 3-Phosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2646-35-7</RegistryNumber>
<NameOfSubstance UI="C020495">sedoheptulose 7-phosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>681HV46001</RegistryNumber>
<NameOfSubstance UI="D012266">Ribose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.2.1.2</RegistryNumber>
<NameOfSubstance UI="D014153">Transaldolase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.2.1</RegistryNumber>
<NameOfSubstance UI="D011683">Purine-Nucleoside Phosphorylase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="C071570">SNF1-related protein kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C500749">target of rapamycin protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.11</RegistryNumber>
<NameOfSubstance UI="D017868">Cyclic AMP-Dependent Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.31</RegistryNumber>
<NameOfSubstance UI="D055372">AMP-Activated Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.2.-</RegistryNumber>
<NameOfSubstance UI="D009699">N-Glycosyl Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.2.3</RegistryNumber>
<NameOfSubstance UI="C454867">URH1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055372" MajorTopicYN="N">AMP-Activated Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017868" MajorTopicYN="N">Cyclic AMP-Dependent Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005986" MajorTopicYN="N">Glyceraldehyde 3-Phosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009699" MajorTopicYN="N">N-Glycosyl Hydrolases</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009711" MajorTopicYN="N">Nucleotides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010427" MajorTopicYN="N">Pentose Phosphate Pathway</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011683" MajorTopicYN="N">Purine-Nucleoside Phosphorylase</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012266" MajorTopicYN="N">Ribose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013403" MajorTopicYN="N">Sugar Phosphates</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014153" MajorTopicYN="N">Transaldolase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>02</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>04</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23670538</ArticleId>
<ArticleId IdType="pii">msb201321</ArticleId>
<ArticleId IdType="doi">10.1038/msb.2013.21</ArticleId>
<ArticleId IdType="pmc">PMC4039369</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Basic Microbiol. 2001;41(6):329-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11802543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1998 Dec;9(12):3273-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jan 12;276(2):884-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Nov 13;151(4):863-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11076970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Sep;192(1):73-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22964838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2003 Jun;21(6):692-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12740584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2005 Feb;9(1):62-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15701455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Nov 19;330(6007):1099-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21097934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(8):1299-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18714298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 May 14;99(10):6784-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2010;6:344</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20087341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2009;5:306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19756045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 29;119(7):969-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Dec 14;294(5550):2364-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1992;26:159-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1482110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Feb 15;25(4):336-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21289062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 24;281(47):36149-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16990279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Jun 10;145(6):969-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21663798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Jan;48(1-2):155-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11860207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2009 Jan;5(1):e1000270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19180179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2002 Jun;41(3):132-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12111094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jun 14;277(24):22103-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11934891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Oct 12;48(1):52-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22902555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 24;279(52):54687-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jan 31;493(7434):679-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23263183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1995;33:299-321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18999963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Apr 22;348(1):113-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15808857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2012 Nov 30;586(23):4114-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23103740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2002 Sep 30;79(7):703-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12209793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Apr;31(4):357-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23455438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Apr 6;316(5821):109-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17412959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2012 Jun;8(6):562-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22522319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2006 Mar;273(6):1089-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16519676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Apr 1;25(7):717-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21406549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 13;273(7):3963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Jan 1;21(1):198-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19889834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):8846-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18234677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Oct;26(10):1155-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18846089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol. 2007;6(4):10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18154684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1975 Feb 3;51(1):253-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">235429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Feb;39(3):533-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11169096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2008;42:27-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18303986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2010 Apr 15;82(8):3212-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20349993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jan 23;313(4):907-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14706628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Apr 2;285(14):10703-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20139423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2008;2:87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18925958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Folia Microbiol (Praha). 1997;42(5):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9438349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Mar 1;25(5):460-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21317241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Dec 16;334(6062):1524-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22096102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 23;432(7020):1032-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15525940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2009;5:245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19225458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jan 17;278(3):1415-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12401799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 Aug;5(8):593-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19561621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jul 2;285(27):21049-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20427268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2005 Aug;1(3):130-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16408016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Oct;18(10):4180-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17699586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 2011;76:389-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22442109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2001 Jan;19(1):45-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11135551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 Sep 1;374(Pt 2):513-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12755685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2012 Mar;12(2):104-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22128902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 1991 May 29-Jun 12;104(1-2):181-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1921998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17049-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Mar;68(3):1336-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11872485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Oct 18;111(2):155-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Ther. 2005 Jul;107(1):1-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15963349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2007 Aug 1;129(30):9294-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17616198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Aug;183(16):4910-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11466296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 1977;15:253-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">143876</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
<settlement>
<li>Princeton (New Jersey)</li>
</settlement>
<orgName>
<li>Université de Princeton</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Absalan, Farnaz" sort="Absalan, Farnaz" uniqKey="Absalan F" first="Farnaz" last="Absalan">Farnaz Absalan</name>
<name sortKey="Broach, James R" sort="Broach, James R" uniqKey="Broach J" first="James R" last="Broach">James R. Broach</name>
<name sortKey="Brown, Greg" sort="Brown, Greg" uniqKey="Brown G" first="Greg" last="Brown">Greg Brown</name>
<name sortKey="Caudy, Amy A" sort="Caudy, Amy A" uniqKey="Caudy A" first="Amy A" last="Caudy">Amy A. Caudy</name>
<name sortKey="Kuznetsova, Ekaterina" sort="Kuznetsova, Ekaterina" uniqKey="Kuznetsova E" first="Ekaterina" last="Kuznetsova">Ekaterina Kuznetsova</name>
<name sortKey="Letisse, Fabien" sort="Letisse, Fabien" uniqKey="Letisse F" first="Fabien" last="Létisse">Fabien Létisse</name>
<name sortKey="Lu, Wenyun" sort="Lu, Wenyun" uniqKey="Lu W" first="Wenyun" last="Lu">Wenyun Lu</name>
<name sortKey="Rabinowitz, Joshua D" sort="Rabinowitz, Joshua D" uniqKey="Rabinowitz J" first="Joshua D" last="Rabinowitz">Joshua D. Rabinowitz</name>
<name sortKey="Yakunin, Alexander F" sort="Yakunin, Alexander F" uniqKey="Yakunin A" first="Alexander F" last="Yakunin">Alexander F. Yakunin</name>
</noCountry>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Xu, Yi Fan" sort="Xu, Yi Fan" uniqKey="Xu Y" first="Yi-Fan" last="Xu">Yi-Fan Xu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001009 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001009 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23670538
   |texte=   Nucleotide degradation and ribose salvage in yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23670538" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020